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Abstract
The dynamics of two weakly interacting spins coupled to separate bosonic
baths is studied. An analytical solution in the Born approximation for arbitrary
spectral density functions of the bosonic environments is found. It is shown
that in the non-Markovian cases concurrence ‘lives’ longer or reaches greater
values.

PACS numbers: 03.67.Mn, 03.65.Yz

1. Introduction

The implementation of more and more efficient nanodevices exploitable in applicative contexts,
like quantum computers, often requires a highly challenging miniaturization process aimed
at packing a huge number of point-like basic elements, whose dynamics mimics indeed that
of a qubit. Stimulated by such a requirement, over the last few years theoretical schemes
have been investigated in the language of spin- 1

2 models [1]. Apart from the simple dynamical
behavior of each elementary constituent these Hamiltonian models do indeed capture the basic
ingredients of several physical situations. In addition, spin models allow for the description of
the effective interactions in a variety of different physical contexts ranging from high energy
to nuclear physics [2, 3]. In condensed matter physics they capture several aspects of high-
temperature superconductors, quantum Hall systems and heavy fermions [4–6]. We point
out that Hamiltonians for interacting spins can be realized artificially in Josephson junctions
arrays [7], with neutral atoms loaded in optical lattices [8–10] or with electrons in quantum
dots [11].

In this context, a subject deserving a particular interest is entanglement dynamics. In view
of possible applications it is important to understand the extent to which quantum coherences
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may be protected against the unavoidable degradation of the purity of the state, in particular
in the presence of many-body interactions.

In this paper we focus our attention on a spin model recently introduced by Quiroga
[12] and successively analyzed by other authors [13–16]. It consists of two interacting spins
1
2 , each coupled to a separate bosonic bath [12, 13]. Our aim is to study the entanglement
dynamics of the two spins in the non-Markovian regime. Many authors have addressed
the question of the dynamics of the entanglement between qubits in the non-Markovian
environments. However, usually a system of non-interacting qubits in contact with separate
bosonic baths is considered. Entanglement is either introduced in the initial preparation
[17, 18] or created by the interaction of qubits with a common environment [19]. The focus of
this paper is to study a system of directly interacting qubits. This is a typical situation in solid-
state systems. For example, double quantum dots can be modeled as coupled qubit systems
in contact with separate bosonic baths. For the demonstration of the dynamical properties of
the system, in this paper we will consider Lorentz spectral density and Ohmic spectral density
with a Lorentz–Drude cut-off. For a different model it has been shown that entanglement of
qubits can occur in super-Ohmic environments even at non-vanishing temperature [20, 21].

The paper is structured as follows. In section 2 we describe in detail the model. In
section 3 we present the analytical solution of the non-Markovian master equation for the
reduced system constituted by the two interacting spins in the zero-temperature limit. In
section 4 we analyze the entanglement dynamics of the two spins assuming for the environment
a Lorentz spectral density and an Ohmic spectral density with the Lorentz–Drude cut-off
function. Finally, conclusive remarks are given in section 5.

2. The model

Our analysis is focused on the dynamics of a composite system coupled to bosonic
environments. Parts of the dynamical system are weakly interacting. The total Hamiltonian
can be written as

H = HS + λ2HI + HB + λHSB, (1)

where (HS + λ2HI) is the Hamiltonian describing the dynamics of the composite system, HS

is the Hamiltonian of the free components of the system, HI is the Hamiltonian of interaction
between the parts of the system. The operator HB describes bosonic environments, and the
Hamiltonian HSB denotes the Hamiltonian of the interaction between the system and the
environment. The parameter λ is a dimensionless expansion parameter. The non-Markovian
dynamics of the reduced system will be described by a master equation containing terms no
higher than the square of the expansion parameter λ.

The second-order time-convolutionless form of the master equation is given by [22]

d

dt
ρI

S(t) = −λ2
∫ t

0
dτ trB

[
HSB(t),

[
HSB(τ), ρI

S(t) ⊗ ρB

]]
, (2)

where HSB(t) denotes the Hamiltonian HSB and ρI
S(t)denotes the density matrix of the reduced

system in the interaction picture by the Hamiltonian (HS + λ2HI + HB). The density matrix
ρB = e−βHB /tr[e−βHB ] describes the state of the environment.

The present general approach is applied to a system consisting of a pair of weakly
interacting spins, each coupled to a bosonic bath. The total Hamiltonian is given by
equation (1). The Hamiltonian of the two free spins characterized by the same energy ε

reads

HS = ε

2
σ z

1 +
ε

2
σ z

2 . (3)
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As usual σ z
i and σ±

i are the Pauli operators describing the ith spin (i = 1, 2). The Hamiltonian
of the weakly interacting spins is given by

λ2HI = K
(
σ +

1 σ−
2 + σ−

1 σ +
2

)
, (4)

where K is a constant defining the strength of the spin–spin interaction. The Hamiltonian of
the bosonic baths characterized by the annihilation and creation operators bni and b

†
ni (i = 1, 2)

reads

HB =
∑

n

ωn,1b
†
n,1bn,1 +

∑
m

ωm,2b
†
m,2bm,2. (5)

The coupling of each spin to the separate bosonic baths is described by

HSB = σ +
1

∑
n

gn,1bn,1 + σ +
2

∑
m

gm,2bm,2 + h.c., (6)

where gn,1 and gm,2 denote the coupling between the spin and its corresponding bosonic baths.
In this paper units are chosen such that kB = h̄ = 1. The Hamiltonian λHSB in the interaction
picture defined by the Hamiltonian (HS + λ2HI + HB) is given by

λHSB(t) = σ +
1

∑
n

gn,1bn,1 ei(ε−ωn,1)t + σ +
2

∑
n

gn,2bn,2 ei(ε−ωn,2)t + h.c. (7)

In the above expression we neglect terms proportional to the cube of λ and higher. By direct
calculation we show that

−λ2
∫ t

0
dτ trB

[
HSB(t),

[
HSB(τ), ρI

S(t) ⊗ ρB

]] =
2∑

j=1

L(Dj)(t)ρI
S(t), (8)

where L(Dj)(t) is the Liouville superoperator defined by

L(Dj)ρI
S(t) = B(j)(t)

[
σ−

j ρS(t), σ
+
j

]
+ B̄(j)(t)

[
σ−

j , ρS(t)σ
+
j

]
+ Ā(j)(t)

[
σ +

j ρS(t), σ
−
j

]
+ A(j)(t)

[
σ +

j , ρS(t)σ
−
j

]
. (9)

The quantities A(j)(t) and B(j)(t) appearing in the previous expression are the so-called
correlation functions whose explicit form is given by

A(j)(t) =
∫ t

0
dτ

∑
n

|gn,j |2
〈
b
†
n,j bn,j

〉
Bj

ei(ε−ωn,j )(t−τ)

= i
∑

n

|gn,j |2
〈
b
†
n,j bn,j

〉
Bj

1 − ei(ε−ωn,j )t

ε − ωn,j

, (10)

B(j)(t) =
∫ t

0
dτ

∑
n

|gn,j |2
〈
bn,j b

†
n,j

〉
Bj

ei(ε−ωn,j )(t−τ)

= i
∑

n

|gn,j |2
〈
bn,j b

†
n,j

〉
Bj

1 − ei(ε−ωn,j )t

ε − ωn,j

, (11)

where 〈O〉Bj ≡ trBj
{OρBj }, Ā(j)(t) and B̄(j)(t) being the complex conjugate of A(j)(t) and

B(j)(t), respectively. To obtain expression (8) we used the fact that the bosonic environments
assumed in this paper are uncorrelated with each other and

〈
bn,j b

†
n,j

〉
Bj

,
〈
b
†
n,j bn,j

〉
Bj

are the
only non-zero second-order correlations in the bath, all the other vanish.

Transforming back to the Schrödinger picture we obtain the following master equation:

d

dt
ρS(t) = −i

[ε

2
σ z

1 +
ε

2
σ z

2 + K
(
σ +

1 σ−
2 + σ−

1 σ +
2

)
, ρS(t)

]
+

2∑
j=1

L(Dj)(t)ρS(t). (12)

3
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It is easy to see that the superoperator L0 defined as

L0ρS(t) = −i
[ε

2
σ z

1 +
ε

2
σ z

2 , ρS(t)
]

(13)

commutes with the superoperator LME(t) given by

LME(t)ρS(t) = −i
[
K

(
σ +

1 σ−
2 + σ−

1 σ +
2

)
, ρS(t)

]
+

2∑
j=1

L(Dj)(t)ρS(t), (14)

and can be neglected as it is irrelevant for the dynamics of the expectation values defined by
the density matrix ρS(t). So, the final form of the master equation which is going to be studied
in this paper reads

d

dt
ρS(t) = −i

[
K

(
σ +

1 σ−
2 + σ−

1 σ +
2

)
, ρS(t)

]
+

2∑
j=1

L(Dj)(t)ρS(t). (15)

3. Exact solution of the master equation

In order to solve the master equation (15), it is useful to separate the equations of motion
for the diagonal elements of the density operator ρS(t) from those relative to the off-diagonal
elements. We have indeed proved that the diagonal and two non-diagonal elements of ρS(t)

have to satisfy the following system of the equations:

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11
S (t)

ρ22
S (t)

ρ33
S (t)

ρ44
S (t)

ρ23
S (t)

ρ32
S (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 	6(t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11
S (t)

ρ22
S (t)

ρ33
S (t)

ρ44
S (t)

ρ23
S (t)

ρ32
S (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where

	6(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−β1 − β2 α2 α1 0 0 0
β2 −α2 − β1 0 α1 iK −iK
β1 0 −α1 − β2 α2 −iK iK
0 β1 β2 −α1 − α2 0 0
0 iK −iK 0 ξ 0
0 −iK iK 0 0 ξ̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(17)

and

αj = A(j)(t) + Ā(j)(t), βj = B(j)(t) + B̄(j)(t),

ξ = −A(1)(t) − Ā(2)(t) − B(1)(t) − B̄(2)(t).
(18)

In what follows we will consider the case in which the two bosonic baths are both prepared
in a thermal state with T = 0. This assumption in turn implies that the correlation functions
reduce to

A(j)(t) ≡ 0, B(j)(t) ≡ B(t) = i
∑

n

|gn|2 1 − ei(ε−ωn)t

ε − ωn

. (19)

4
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Under these hypotheses it is possible to rewrite 	6(t) in the following way: 	6(t) =
(B(t) + B̄(t))L1 + iKL2, where L1 and L2 are 6 × 6 commuting matrices. Thus, the solution
of the previous system of differential equations can be written as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11
S (t)

ρ22
S (t)

ρ33
S (t)

ρ44
S (t)

ρ23
S (t)

ρ32
S (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= U6(t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11
S (0)

ρ22
S (0)

ρ33
S (0)

ρ44
S (0)

ρ23
S (0)

ρ32
S (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where

U6(t) = T e
∫ t

0 dτ	6(τ ) = eG(t)L1 e(iKt)L2 (21)

and the symbol T denotes the standard time ordering in the exponent. The function G(t)

appearing in the expression for the matrix U(6)(t) is defined as

G(t) = �(t) + �̄(t), (22)

with

�(t) =
∫ t

0
dτB(τ) =

∑
n

|gn|2 1 − ei(ε−ωn)t + i(ε − ωn)t

(ε − ωn)2
. (23)

The time dependence of the off-diagonal element ρ14
S (t) is trivial, namely ρ14

S (t) =
exp (−2�(t))ρ14

S (0). For the other off-diagonal elements we get the following system of
equations:

d

dt

⎛
⎜⎜⎜⎜⎝

ρ12
S (t)

ρ13
S (t)

ρ24
S (t)

ρ34
S (t)

⎞
⎟⎟⎟⎟⎠ = 	4(t)

⎛
⎜⎜⎜⎜⎝

ρ12
S (t)

ρ13
S (t)

ρ24
S (t)

ρ34
S (t)

⎞
⎟⎟⎟⎟⎠ , (24)

where

	4(t) =

⎛
⎜⎜⎝

−β − B(t) iK 0 0
iK −β − B(t) 0 0
0 β −B(t) −iK
β 0 −iK −B(t)

⎞
⎟⎟⎠ . (25)

One can check that the solution for the above equation has the following form:(
ρ12

S (t)

ρ13
S (t)

)
= e−G(t)−�(t) eiKtσx

(
ρ12

S (0)

ρ13
S (0)

)
(26)

and (
ρ24

S (t)

ρ34
S (t)

)
= U2(t)

(
ρ24

S (0)

ρ34
S (0)

)
+ U2(t)

∫ t

0
dτU−1

2 (τ )

(
ρ13

S (τ )

ρ12
S (τ )

)
, (27)

where the operator U2(t) is defined by

U2(t) = e−�(t) e−iKtσx . (28)

At this point we are in the position to explicitly write the density matrix of the two coupled
spins at a generic time t starting from an arbitrary initial condition. For simplicity, we report

5
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on such a solution in the appendix. In what follows, instead, we focus on the cases in which
the initial state of the pair of coupled spins is the Bell state |−〉 = 1√

2
(|10〉 − |01〉) or the

factorized state |0〉 = |10〉. Exploiting the results presented in the appendix it is possible to
demonstrate that the state of the reduced system at a generic time instant t can be written in
the simple form

ρS(Bell)(t) = e−G(t)|−〉〈−| + (1 − e−G(t))|00〉〈00| (29)

and

ρS(0)(t) = e−G(t)|(t)〉〈(t)| + (1 − e−G(t))|00〉〈00|, (30)

where

|(t)〉 = cos(Kt)|10〉 − i sin(Kt)|01〉. (31)

Another point which we would like to mention here is the connection between the non-
Markovian master equation (15) and the Markovian one. The Markovian limit of the master
equation (15) can be constructed by taking the limit t → ∞ in the set of correlation functions
A(j)(t) and B(j)(t). The solution of the corresponding Markovian master equation for the
system at hand can be constructed from non-Markovian ones by replacing functions �(t) and
G(t) with the corresponding Markovian ones

�(t) ⇒ �M(t) = tBM, (32)

where

BM = lim
t→∞ B(t). (33)

In particular, for the function G(t) we have

G(t) ⇒ GM(t) = t (BM + B̄M) = t2πJ(ω0), (34)

where J (ω0) is the bath spectral density and ω0 = ε
2 .

4. Entanglement dynamics

As emphasized before, the solution we have found has been obtained without specifying the
spectral properties of the bath. The density matrix ρS(t) describing the pair of the coupled
spins, however, depends on the bath spectral density through the function G(t).

In this section, exploiting our results, we will analyze some dynamical properties of the
central system for different spectral distributions of the environment. In particular, we will
examine how the entanglement evolution is affected by the choice of the reservoir spectral
density. Let us start by considering as a first case the Lorentzian distribution

J (ω) = γ0

2π

γ 2(
ω − ε

2

)2
+ γ 2

, (35)

where γ and γ0 are the reservoir and the system decay rate respectively. This choice in turn
implies that the correlation function B(t), as given in the previous section, is

B(t) = γ0

2
(1 − e−γ t ) (36)

and consequently

G(t) = γ0t +
γ0

γ
(e−γ t − 1). (37)

6
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Figure 1. The concurrence C(t) for a Lorentz bath distribution for different values of the ratio
γ /γ0 (γ /γ0 = 0.1 (solid line), γ /γ0 = 1 (dashed line), γ /γ0 = 10 (dotted line), Markovian case
(dot-and-dash line)). The initial state is the Bell state (38).

We have already demonstrated that starting from the Bell state

|ψ−〉 = 1√
2
(|10〉 − |01〉) (38)

at a generic time t the density operator describing our system can be written as in equation (29).
It is interesting to analyze how the interaction of the two coupled spins with the environments
modifies the entanglement initially present in the system. To this end we consider the time
behavior of the concurrence [23] of the two spins. Using equation (29) it is easy to demonstrate
that in correspondence to any environmental spectral density, the concurrence is given by

C(t) = e−G(t). (39)

Thus, when J (ω) assumes the form (35), we have

C(t) = exp

(
−(γ0t +

γ0

γ
(e−γ t − 1))

)
. (40)

In figure 1 we plot C(t) against γ0t for different values of the ratio γ /γ0 in the non-Markovian
case. For comparison with the Markovian limit (34) we include also the Markovian case
(GM(t) = γ0t). As expected, in the presence of the two baths the concurrence function,
starting from its maximum value, decreases as time elapses. However, in the non-Markovian
regime, corresponding to γ /γ0 < 2, the entanglement in the two spins persists for a longer
time with respect to the Markovian case.

Suppose now that the two environments are characterized by an Ohmic spectral density
with the Lorentz–Drude cut-off function [19, 24]:

J (ω) = 2ω

π

ω2
c

ω2
c + ω2

, (41)

where ω is the frequency of the bath and ωc is the cut-off frequency. Under this hypothesis,
putting ω0 = ε/2, the correlation function becomes

B(t) = −i
2ω2

c

ωc − iω0
(1 − e−(ωc−iω0)t ) (42)

7



J. Phys. A: Math. Theor. 42 (2009) 485301 I Sinayskiy et al

Figure 2. The concurrence C(t) for a Lorentz–Drude bath distribution for different values of
the ratio ωc/ω0 (ωc/ω0 = 0.1 (solid line), ωc/ω0 = 1 (dashed line), ωc/ω0 = 10 (dotted line),
Markovian case (dot-and-dash line)). The initial state is the Bell state (38).

and thus

G(t) = 4
ω2

cω0

ω2
c + ω2

0

t + 4
ω2

c(
ω2

c + ω2
0

)2

(
ω2

c − ω2
0

)
e−ωct sin(ω0t)

+ 8
ω3

cω0(
ω2

c + ω2
0

)2 e−ωct cos(ω0t) − 8
ω3

cω0(
ω2

c + ω2
0

)2 . (43)

The corresponding Markovian function reads

GM(t) = 2πJ(ω0)t = 4
ω2

cω0

ω2
c + ω2

0

t. (44)

Using equation (39) it is possible to analyze the evolution of the degree of entanglement
of the two spins starting from the Bell state (38). The results we have obtained are reported in
figure 2 for different values of the ratio ωc/ω0. Comparing the four plots, we observe that when
the spectrum of the reservoir does not completely overlap with the frequency of the system,
that is ωc 
 ω0, the concurrence decreases to zero more slowly than in the opposite case,
ωc � ω0. The results we have obtained, reported in figures 1 and 2, indicate that when the
baths are characterized by Ohmic spectral densities with the Lorentz–Drude cut-off function,
as given in equation (41), the entanglement initially present in the two spins can be preserved
for a longer time with respect to the case of a Lorentz bath, at least for some values of the ratio
ωc/ω0.

Following the analysis developed in this section it is also interesting to examine the
behavior of the system starting from a factorized initial condition instead of an entangled one.
In what follows, in particular, we suppose that at t = 0 the two spins are in the separable state
|1, 0〉 and we study the time behavior of the concurrence. We find that in this case

C(t) = e−G(t)|sin(2Kt)|. (45)

The interaction between the two spins, as expressed by the effective Hamiltonian (4), enables
the generation of entanglement starting from the factorized initial condition given before.
On the other hand, in view of the fact that the two spins are coupled to two different baths,
the quantum correlations that are established in the pair of spins will be destroyed. In the

8
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Figure 3. The concurrence C(t) for a Lorentz bath distribution for different values of the ratio
γ /γ0 (γ /γ0 = 0.1 (solid line), γ /γ0 = 1 (dashed line), γ /γ0 = 10 (dotted line), Markovian case
(dot-and-dash line)). The initial state is |1, 0〉.

Figure 4. The concurrence C(t) for a Lorentz–Drude bath distribution for different values of
the ratio ωc/ω0 (ωc/ω0 = 0.1 (solid line), ωc/ω0 = 1 (dashed line), ωc/ω0 = 10 (dotted line),
Markovian case (dot-and-dash line)). The initial state is |1, 0〉.

non-Markovian regime, however, we expect that the entanglement will be preserved for a
longer time with respect to the Markovian one. This is confirmed by the time behavior of
the concurrence function of the two spins for the Lorentzian spectral density of the baths
(figure 3) and for the Ohmic spectral density of the baths (figure 4). Looking at these figures
we also observe that the degree of entanglement that we can realize in the system starting
from the state |1, 0〉 depends on the ratio γ /γ0 or ωc/ω0. In particular, for the Lorentz spectral
density, figure 3, the maximum value of the concurrence function is reached in the highly
non-Markovian case, that is, γ /γ0 = 0.1. For the Ohmic spectral density, figure 4, the highly
non-Markovian case (ωc/ω0 = 0.1) corresponds to the presence of the quantum correlation in
the system for the longest time.

9
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Figure 5. Dynamics of the probability of finding the system in the state |0, 1〉 (Markovian regime
(solid line), post-Markovian regime (dashed line), non-Markovian regime (dotted line) for a Lorentz
bath distribution with γ /γ0 = 4). The initial state is the separable state |1, 0〉.

Before concluding we wish to compare our results with the ones obtained in the Markovian
[13, 16] and post-Markovian [25, 26] regimes relatively to the same physical system. In order
to do this, we concentrate our attention on the temporal behavior of the probability P01(t) of
finding the qubit pair in the state |0, 1〉 supposing that at time t = 0 the system is prepared
in the state |1, 0〉. In figure 5, where we show P01(t) in the three different regimes, time
is scaled in units of the strength K of the spin–spin interaction. As shown, when we are
in the non-Markovian regime, P01(t) reaches a maximum value that is greater than the one
characterizing the Markovian and post-Markovian cases. Moreover, as expected in view of
the presence of the two baths, in all the regimes the probability P01(t) decays toward zero after
reaching its maximum value.

5. Conclusions

In this paper we have analyzed the non-Markovian dynamics of a pair of weakly interacting
spins coupled to two separate bosonic baths. After deriving the second-order master equation,
that is local in time, we have given an exact solution with the assumption that the two bosonic
environments are both prepared in a thermal state with T = 0. It is important to emphasize
that our solution is valid whatever the initial conditions of the system or the spectral properties
of the two baths may be. From the solution of the non-Markovian master equation obtained
we construct a solution of the corresponding master equation in the Markovian limit. Starting
from the knowledge of the solution of the master equation we have studied the temporal
behavior of the entanglement established in the pair of interacting spins for different spectral
densities. The results show that in the non-Markovian case the concurrence, that is a measure
of entanglement, of the system of two spins ‘lives’ longer or reaches greater values with respect
to the Markovian regime. We wish to stress that the results presented in this paper are not
directly connected to the so-called entanglement sudden death [27] because the concurrence
does not vanish for a certain finite instant of time and has ‘infinite’ tails (39), (45). Our results
motivate further studies on stronger coupling constants and non-zero temperatures.
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Appendix

The full solution for the density matrix of the pair of spins for arbitrary initial conditions reads:

ρ11
S (t) = e−2G(t)ρ11

S (0), (A.1)

ρ22
S (t) = e−G(t)(1 − e−G(t))ρ11

S (0) + e−G(t) cos2(Kt)ρ22
S (0)

+ e−G(t) sin2(Kt)ρ33
S (0) − e−G(t) sin(2Kt) Im

(
ρ23

S (0)
)
, (A.2)

ρ33
S (t) = e−G(t)(1 − e−G(t))ρ11

S (0) + e−G(t) sin2(Kt)ρ22
S (0)

+ e−G(t) cos2(Kt)ρ33
S (0) + e−G(t) sin(2Kt) Im

(
ρ23

S (0)
)
, (A.3)

ρ44
S (t) = 1 − ρ11

S (t) − ρ22
S (t) − ρ33

S (t), (A.4)

ρ23
S (t) = e−G(t) cos2(Kt)ρ23

S (0) + e−G(t) sin2(Kt)ρ32
S (0)

+
i

2
e−G(t) sin(2Kt)

(
ρ22

S (0) − ρ33
S (0)

)
, (A.5)

ρ14
S (t) = e−2�(t)ρ14

S (0), (A.6)

ρ12
S (t) = e−G(t)−�(t) cos(Kt)ρ12

S (0) + i e−G(t)−�(t) sin(Kt)ρ13
S (0), (A.7)

ρ13
S (t) = e−G(t)−�(t) cos(Kt)ρ13

S (0) + i e−G(t)−�(t) sin(Kt)ρ12
S (0), (A.8)

ρ24
S (t) = e−�(t) cos(Kt)ρ24

S (0) − i e−�(t) sin(Kt)ρ34
S (0)

+
∫ t

0
dτβ(τ) e−G(τ)

(
cos K(t − τ)ρ13

S (τ ) − i sin K(t − τ)ρ12
S (τ )

)
, (A.9)

ρ34
S (t) = e−�(t) cos(Kt)ρ34

S (0) − i e−�(t) sin(Kt)ρ24
S (0)

+
∫ t

0
dτβ(τ) e−G(τ)

(
cos K(t − τ)ρ12

S (τ ) − i sin K(t − τ)ρ13
S (τ )

)
. (A.10)

We are going to show that the solution of the non-Markovian master equation is positive. For
simplicity we assume an arbitrary X-like initial state of the two-qubit system;

ρS(0) = p0|00〉〈00| + p1|01〉〈01| + p2|10〉〈10| + (1 − p0 − p1 − p2)|11〉〈11|
+ C12|01〉〈10| + C̄12|10〉〈01| + C03|00〉〈11| + C̄03|11〉〈00|. (A.11)

The function G(t) can be rewritten in the following way:

G(t) = �(t) + �̄(t) = 4
∑

n

|gn|2
sin2 (ε−ωn)t

2

(ε − ωn)
2 � 0. (A.12)

After straightforward transformations we get

ρ44
S (t) = (

1 − ρ11
S (0) − ρ22

S (0) − ρ33
S (0)

)
+ (1 − e−G(t))2ρ11

S (0)

+ (1 − e−G(t))
(
ρ22

S (0) + ρ33
S (0)

); (A.13)
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taking into account the above expression for ρ44
S (t) and the fact that G(t) � 0 it is obvious

that ρ11
S (t) and ρ44

S (t) are nonnegative. To prove the positivity of the solution we need to show
that ρ22

S (t) and ρ33
S (t) are nonnegative too. To this end we show that

cos2(Kt)ρ22
S (0) + sin2(Kt)ρ33

S (0) − sin(2Kt) Im
(
ρ23

S (0)
)

� 0. (A.14)

Using the positivity condition for the initial density matrix ρS(0) which implies that
p1p2 � |C12|2 or ρ22

S (0)ρ33
S (0) �

∣∣ρ23
S (0)

∣∣2
we can strengthen the above inequality by

replacing sin(2Kt) Im
(
ρ23

S (0)
)

with ± sin(2Kt)

√
ρ22

S (0)ρ33
S (0) and get

cos2(Kt)ρ22
S (0) + sin2(Kt)ρ33

S (0) ± sin(2Kt)

√
ρ22

S (0)ρ33
S (0)

= (
cos(Kt)

√
ρ22

S (0) ± sin(Kt)

√
ρ33

S (0)
)2 � 0. (A.15)

Thus, from the above inequality it follows that ρ22
S (t) � 0. The same statement for ρ33

S (t) is
established analogously. This proves that the density matrix is positive.
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